Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
iScience ; 26(10): 107708, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37720087

RESUMO

Q/R editing of the kainate receptor (KAR) subunit GluK2 radically alters recombinant KAR properties, but the effects on endogenous KARs in vivo remain largely unexplored. Here, we compared GluK2 editing-deficient mice that express ∼95% unedited GluK2(Q) to wild-type counterparts that express ∼85% edited GluK2(R). At mossy fiber-CA3 (MF-CA3) synapses GluK2(Q) mice displayed increased postsynaptic KAR function and KAR-mediated presynaptic facilitation, demonstrating enhanced ionotropic function. Conversely, GluK2(Q) mice exhibited reduced metabotropic KAR function, assessed by KAR-mediated inhibition of slow after-hyperpolarization currents (ISAHP). GluK2(Q) mice also had fewer GluA1-and GluA3-containing AMPA receptors (AMPARs) and reduced postsynaptic AMPAR currents at both MF-CA3 and CA1-Schaffer collateral synapses. Moreover, long-term potentiation of AMPAR-mediated transmission at CA1-Schaffer collateral synapses was reduced in GluK2(Q) mice. These findings suggest that GluK2 Q/R editing influences ionotropic/metabotropic balance of KAR signaling to regulate synaptic expression of AMPARs and plasticity.

3.
Genes Brain Behav ; 22(6): e12865, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37705179

RESUMO

Variations in the Dlg2 gene have been linked to increased risk for psychiatric disorders, including schizophrenia, autism spectrum disorders, intellectual disability, bipolar disorder, attention deficit hyperactivity disorder, and pubertal disorders. Recent studies have reported disrupted brain circuit function and behaviour in models of Dlg2 knockout and haploinsufficiency. Specifically, deficits in hippocampal synaptic plasticity were found in heterozygous Dlg2+/- rats suggesting impacts on hippocampal dependent learning and cognitive flexibility. Here, we tested these predicted effects with a behavioural characterisation of the heterozygous Dlg2+/- rat model. Dlg2+/- rats exhibited a specific, mild impairment in reversal learning in a substrate deterministic bowl-digging reversal learning task. The performance of Dlg2+/- rats in other bowl digging task, visual discrimination and reversal, novel object preference, novel location preference, spontaneous alternation, modified progressive ratio, and novelty-suppressed feeding test were not impaired. These findings suggest that despite altered brain circuit function, behaviour across different domains is relatively intact in Dlg2+/- rats, with the deficits being specific to only one test of cognitive flexibility. The specific behavioural phenotype seen in this Dlg2+/- model may capture features of the clinical presentation associated with variation in the Dlg2 gene.


Assuntos
Guanilato Quinases , Aprendizagem , Proteínas de Membrana , Transtornos Mentais , Humanos , Animais , Ratos , Proteínas de Membrana/genética , Guanilato Quinases/genética , Cognição , Masculino , Feminino , Animais não Endogâmicos , Heterozigoto , Transtornos Mentais/genética , Hipocampo/fisiopatologia
4.
Biol Psychiatry ; 92(4): 323-334, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35227461

RESUMO

BACKGROUND: The discovery of coding variants in genes that confer risk of intellectual disability (ID) is an important step toward understanding the pathophysiology of this common developmental disability. METHODS: Homozygosity mapping, whole-exome sequencing, and cosegregation analyses were used to identify gene variants responsible for syndromic ID with autistic features in two independent consanguineous families from the Arabian Peninsula. For in vivo functional studies of the implicated gene's function in cognition, Drosophila melanogaster and mice with targeted interference of the orthologous gene were used. Behavioral, electrophysiological, and structural magnetic resonance imaging analyses were conducted for phenotypic testing. RESULTS: Homozygous premature termination codons in PDZD8, encoding an endoplasmic reticulum-anchored lipid transfer protein, showed cosegregation with syndromic ID in both families. Drosophila melanogaster with knockdown of the PDZD8 ortholog exhibited impaired long-term courtship-based memory. Mice homozygous for a premature termination codon in Pdzd8 exhibited brain structural, hippocampal spatial memory, and synaptic plasticity deficits. CONCLUSIONS: These data demonstrate the involvement of homozygous loss-of-function mutations in PDZD8 in a neurodevelopmental cognitive disorder. Model organisms with manipulation of the orthologous gene replicate aspects of the human phenotype and suggest plausible pathophysiological mechanisms centered on disrupted brain development and synaptic function. These findings are thus consistent with accruing evidence that synaptic defects are a common denominator of ID and other neurodevelopmental conditions.


Assuntos
Disfunção Cognitiva , Deficiência Intelectual , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Disfunção Cognitiva/genética , Consanguinidade , Drosophila , Drosophila melanogaster , Humanos , Deficiência Intelectual/genética , Camundongos , Mutação/genética
5.
Neuropsychopharmacology ; 47(7): 1367-1378, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35115661

RESUMO

Copy number variants indicating loss of function in the DLG2 gene have been associated with markedly increased risk for schizophrenia, autism spectrum disorder, and intellectual disability. DLG2 encodes the postsynaptic scaffolding protein DLG2 (PSD93) that interacts with NMDA receptors, potassium channels, and cytoskeletal regulators but the net impact of these interactions on synaptic plasticity, likely underpinning cognitive impairments associated with these conditions, remains unclear. Here, hippocampal CA1 neuronal excitability and synaptic function were investigated in a novel clinically relevant heterozygous Dlg2+/- rat model using ex vivo patch-clamp electrophysiology, pharmacology, and computational modelling. Dlg2+/- rats had reduced supra-linear dendritic integration of synaptic inputs resulting in impaired associative long-term potentiation. This impairment was not caused by a change in synaptic input since NMDA receptor-mediated synaptic currents were, conversely, increased and AMPA receptor-mediated currents were unaffected. Instead, the impairment in associative long-term potentiation resulted from an increase in potassium channel function leading to a decrease in input resistance, which reduced supra-linear dendritic integration. Enhancement of dendritic excitability by blockade of potassium channels or activation of muscarinic M1 receptors with selective allosteric agonist 77-LH-28-1 reduced the threshold for dendritic integration and 77-LH-28-1 rescued the associative long-term potentiation impairment in the Dlg2+/- rats. These findings demonstrate a biological phenotype that can be reversed by compound classes used clinically, such as muscarinic M1 receptor agonists, and is therefore a potential target for therapeutic intervention.


Assuntos
Transtorno do Espectro Autista , Guanilato Quinases/metabolismo , Animais , Transtorno do Espectro Autista/metabolismo , Hipocampo/metabolismo , Potenciação de Longa Duração/genética , Proteínas de Membrana/metabolismo , Plasticidade Neuronal/genética , Canais de Potássio/metabolismo , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
6.
Genes Brain Behav ; 21(4): e12797, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35075790

RESUMO

Genetic studies implicate disruption to the DLG2 gene in copy number variants as increasing risk for schizophrenia, autism spectrum disorders and intellectual disability. To investigate psychiatric endophenotypes associated with DLG2 haploinsufficiency (and concomitant PSD-93 protein reduction) a novel clinically relevant Dlg2+/- rat was assessed for abnormalities in anxiety, sensorimotor gating, hedonic reactions, social behaviour, and locomotor response to the N-Methyl-D-aspartic acid receptor antagonist phencyclidine. Dlg gene and protein expression were also investigated to assess model validity. Reductions in PSD-93 messenger RNA and protein were observed in the absence of compensation by other related genes or proteins. Behaviourally Dlg2+/- rats show a potentiated locomotor response to phencyclidine, as is typical of psychotic disorder models, in the absence of deficits in the other behavioural phenotypes assessed here. This shows that the behavioural effects of Dlg2 haploinsufficiency may specifically relate to psychosis vulnerability but are subtle, and partially dissimilar to behavioural deficits previously reported in Dlg2+/- mouse models demonstrating issues surrounding the comparison of models with different aetiology and species. Intact performance on many of the behavioural domains assessed here, such as anxiety and reward processing, will remove these as confounds when continuing investigation into this model using more complex cognitive tasks.


Assuntos
Guanilato Quinases , Haploinsuficiência , Esquizofrenia , Proteínas Supressoras de Tumor , Animais , Modelos Animais de Doenças , Guanilato Quinases/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Camundongos , Fenciclidina/farmacologia , Ratos , Esquizofrenia/genética , Esquizofrenia/metabolismo , Comportamento Social , Proteínas Supressoras de Tumor/genética
7.
Neuroscience ; 489: 69-83, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34780920

RESUMO

Acetylcholine has been proposed to facilitate the formation of memory ensembles within the hippocampal CA3 network, by enhancing plasticity at CA3-CA3 recurrent synapses. Regenerative NMDA receptor (NMDAR) activation in CA3 neuron dendrites (NMDA spikes) increase synaptic Ca2+ influx and can trigger this synaptic plasticity. Acetylcholine inhibits potassium channels which enhances dendritic excitability and therefore could facilitate NMDA spike generation. Here, we investigate NMDAR-mediated nonlinear synaptic integration in stratum radiatum (SR) and stratum lacunosum moleculare (SLM) dendrites in a reconstructed CA3 neuron computational model and study the effect of cholinergic inhibition of potassium conductances on this nonlinearity. We found that distal SLM dendrites, with a higher input resistance, had a lower threshold for NMDA spike generation compared to SR dendrites. Simulating acetylcholine by blocking potassium channels (M-type, A-type, Ca2+-activated, and inwardly-rectifying) increased dendritic excitability and reduced the number of synapses required to generate NMDA spikes, particularly in the SR dendrites. The magnitude of this effect was heterogeneous across different dendritic branches within the same neuron. These results predict that acetylcholine facilitates dendritic integration and NMDA spike generation in selected CA3 dendrites which could strengthen connections between specific CA3 neurons to form memory ensembles.


Assuntos
Acetilcolina , N-Metilaspartato , Acetilcolina/farmacologia , Dendritos/fisiologia , Hipocampo/fisiologia , N-Metilaspartato/farmacologia , Canais de Potássio , Células Piramidais/fisiologia , Sinapses/fisiologia
8.
PLoS One ; 16(12): e0260444, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34890390

RESUMO

Early life stress (ELS) is an important risk factor for the development of depression. Impairments in reward learning and feedback sensitivity are suggested to be an intermediate phenotype in depression aetiology therefore we hypothesised that healthy adults with a history of ELS would exhibit reward processing deficits independent of any current depressive symptoms. We recruited 64 adults with high levels of ELS and no diagnosis of a current mental health disorder and 65 controls. Participants completed the probabilistic reversal learning task and probabilistic reward task followed by depression, anhedonia, social status, and stress scales. Participants with high levels of ELS showed decreased positive feedback sensitivity in the probabilistic reversal learning task compared to controls. High ELS participants also trended towards possessing a decreased model-free learning rate. This was coupled with a decreased learning ability in the acquisition phase of block 1 following the practice session. Neither group showed a reward induced response bias in the probabilistic reward task however high ELS participants exhibited decreased stimuli discrimination. Overall, these data suggest that healthy participants without a current mental health diagnosis but with high levels of ELS show deficits in positive feedback sensitivity and reward learning in the probabilistic reversal learning task that are distinct from depressed patients. These deficits may be relevant to increased depression vulnerability.


Assuntos
Experiências Adversas da Infância/psicologia , Transtorno Depressivo Maior/psicologia , Adulto , Anedonia , Retroalimentação , Feminino , Humanos , Masculino , Reversão de Aprendizagem , Recompensa , Status Social
10.
PLoS Comput Biol ; 17(10): e1009435, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34597293

RESUMO

In the hippocampus, episodic memories are thought to be encoded by the formation of ensembles of synaptically coupled CA3 pyramidal cells driven by sparse but powerful mossy fiber inputs from dentate gyrus granule cells. The neuromodulators acetylcholine and noradrenaline are separately proposed as saliency signals that dictate memory encoding but it is not known if they represent distinct signals with separate mechanisms. Here, we show experimentally that acetylcholine, and to a lesser extent noradrenaline, suppress feed-forward inhibition and enhance Excitatory-Inhibitory ratio in the mossy fiber pathway but CA3 recurrent network properties are only altered by acetylcholine. We explore the implications of these findings on CA3 ensemble formation using a hierarchy of models. In reconstructions of CA3 pyramidal cells, mossy fiber pathway disinhibition facilitates postsynaptic dendritic depolarization known to be required for synaptic plasticity at CA3-CA3 recurrent synapses. We further show in a spiking neural network model of CA3 how acetylcholine-specific network alterations can drive rapid overlapping ensemble formation. Thus, through these distinct sets of mechanisms, acetylcholine and noradrenaline facilitate the formation of neuronal ensembles in CA3 that encode salient episodic memories in the hippocampus but acetylcholine selectively enhances the density of memory storage.


Assuntos
Acetilcolina/farmacologia , Região CA3 Hipocampal , Memória , Norepinefrina/farmacologia , Animais , Região CA3 Hipocampal/citologia , Região CA3 Hipocampal/efeitos dos fármacos , Região CA3 Hipocampal/fisiologia , Biologia Computacional , Memória/efeitos dos fármacos , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos
11.
Nat Commun ; 12(1): 5475, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34531380

RESUMO

Acetylcholine release in the hippocampus plays a central role in the formation of new memory representations. An influential but largely untested theory proposes that memory formation requires acetylcholine to enhance responses in CA1 to new sensory information from entorhinal cortex whilst depressing inputs from previously encoded representations in CA3. Here, we show that excitatory inputs from entorhinal cortex and CA3 are depressed equally by synaptic release of acetylcholine in CA1. However, feedforward inhibition from entorhinal cortex exhibits greater depression than CA3 resulting in a selective enhancement of excitatory-inhibitory balance and CA1 activation by entorhinal inputs. Entorhinal and CA3 pathways engage different feedforward interneuron subpopulations and cholinergic modulation of presynaptic function is mediated differentially by muscarinic M3 and M4 receptors, respectively. Thus, our data support a role and mechanisms for acetylcholine to prioritise novel information inputs to CA1 during memory formation.


Assuntos
Acetilcolina/metabolismo , Região CA1 Hipocampal/fisiologia , Córtex Entorrinal/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Retroalimentação Fisiológica/fisiologia , Transmissão Sináptica/fisiologia , Animais , Região CA1 Hipocampal/citologia , Carbacol/farmacologia , Agonistas Colinérgicos/farmacologia , Córtex Entorrinal/citologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Retroalimentação Fisiológica/efeitos dos fármacos , Interneurônios/metabolismo , Interneurônios/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Patch-Clamp , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/metabolismo , Transmissão Sináptica/efeitos dos fármacos
12.
iScience ; 24(9): 103029, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34553130

RESUMO

It is well established that long-term depression (LTD) can be initiated by either NMDA or mGluR activation. Here we report that sustained activation of GluK2 subunit-containing kainate receptors (KARs) leads to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) endocytosis and induces LTD of AMPARs (KAR-LTDAMPAR) in hippocampal neurons. The KAR-evoked loss of surface AMPARs is blocked by the ionotropic KAR inhibitor UBP 310 indicating that KAR-LTDAMPAR requires KAR channel activity. Interestingly, however, blockade of PKC or PKA also reduces GluA2 surface expression and occludes the effect of KAR activation. In acute hippocampal slices, kainate application caused a significant loss of GluA2-containing AMPARs from synapses and long-lasting depression of AMPAR excitatory postsynaptic currents in CA1. These data, together with our previously reported KAR-LTPAMPAR, demonstrate that KARs can bidirectionally regulate synaptic AMPARs and synaptic plasticity via different signaling pathways.

13.
Neuropharmacology ; 198: 108743, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34363811

RESUMO

In 1981 Jeff Watkins and Dick Evans wrote what was to become a seminal review on excitatory amino acids (EAAs) and their receptors (Watkins and Evans, 1981). Bringing together various lines of evidence dating back over several decades on: the distribution in the nervous system of putative amino acid neurotransmitters; enzymes involved in their production and metabolism; the uptake and release of amino acids; binding of EAAs to membranes; the pharmacological action of endogenous excitatory amino acids and their synthetic analogues, and notably the actions of antagonists for the excitations caused by both nerve stimulation and exogenous agonists, often using pharmacological tools developed by Jeff and his colleagues, they provided a compelling account for EAAs, especially l-glutamate, as a bona fide neurotransmitter in the nervous system. The rest, as they say, is history, but far from being consigned to history, EAA research is in rude health well into the 21st Century as this series of Special Issues of Neuropharmacology exemplifies. With EAAs and their receptors flourishing across a wide range of disciplines and clinical conditions, we enter into a dialogue with two of the most prominent and influential figures in the early days of EAA research: Jeff Watkins and Dick Evans.


Assuntos
Aminoácidos Excitatórios/fisiologia , Neurotransmissores/fisiologia , Receptores de Glutamato/fisiologia , Animais , Aminoácidos Excitatórios/farmacologia , Humanos , Receptores de Glutamato/efeitos dos fármacos , Sinapses/fisiologia
14.
Neuropharmacology ; 196: 108540, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-33794245

RESUMO

Synaptic plasticity has classically been characterized to involve the NMDA and AMPA subtypes of glutamate receptors, with NMDA receptors providing the key trigger for the induction of long-term plasticity leading to changes in AMPA receptor expression. Here we review the more subtle roles played by kainate receptors, which contribute critical postsynaptic signalling as well as playing major presynaptic auto-receptor roles. We focus on two research areas: plasticity of kainate receptors themselves and the contribution they make to the plasticity of synaptic transmission. This article is part of the special issue on Glutamate Receptors - Kainate receptors.


Assuntos
Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Receptores de Ácido Caínico/fisiologia , Animais , Humanos
15.
Nat Commun ; 11(1): 4395, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32879322

RESUMO

The formation and maintenance of spatial representations within hippocampal cell assemblies is strongly dictated by patterns of inhibition from diverse interneuron populations. Although it is known that inhibitory synaptic strength is malleable, induction of long-term plasticity at distinct inhibitory synapses and its regulation of hippocampal network activity is not well understood. Here, we show that inhibitory synapses from parvalbumin and somatostatin expressing interneurons undergo long-term depression and potentiation respectively (PV-iLTD and SST-iLTP) during physiological activity patterns. Both forms of plasticity rely on T-type calcium channel activation to confer synapse specificity but otherwise employ distinct mechanisms. Since parvalbumin and somatostatin interneurons preferentially target perisomatic and distal dendritic regions respectively of CA1 pyramidal cells, PV-iLTD and SST-iLTP coordinate a reprioritisation of excitatory inputs from entorhinal cortex and CA3. Furthermore, circuit-level modelling reveals that PV-iLTD and SST-iLTP cooperate to stabilise place cells while facilitating representation of multiple unique environments within the hippocampal network.


Assuntos
Hipocampo/fisiologia , Interneurônios/metabolismo , Células Piramidais/fisiologia , Potenciais de Ação , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Canais de Cálcio Tipo T/metabolismo , Channelrhodopsins/metabolismo , Hipocampo/citologia , Camundongos , Optogenética/métodos , Parvalbuminas/metabolismo , Técnicas de Patch-Clamp , Transdução de Sinais , Somatostatina/metabolismo , Sinapses/metabolismo
16.
Cereb Cortex ; 30(12): 6135-6151, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32607551

RESUMO

Release of the neuromodulator noradrenaline signals salience during wakefulness, flagging novel or important experiences to reconfigure information processing and memory representations in the hippocampus. Noradrenaline is therefore expected to enhance hippocampal responses to synaptic input; however, noradrenergic agonists have been found to have mixed and sometimes contradictory effects on Schaffer collateral synapses and the resulting CA1 output. Here, we examine the effects of endogenous, optogenetically driven noradrenaline release on synaptic transmission and spike output in mouse hippocampal CA1 pyramidal neurons. We show that endogenous noradrenaline release enhances the probability of CA1 pyramidal neuron spiking without altering feedforward excitatory or inhibitory synaptic inputs in the Schaffer collateral pathway. ß-adrenoceptors mediate this enhancement of excitation-spike coupling by reducing the charge required to initiate action potentials, consistent with noradrenergic modulation of voltage-gated potassium channels. Furthermore, we find the likely effective concentration of endogenously released noradrenaline is sub-micromolar. Surprisingly, although comparable concentrations of exogenous noradrenaline cause robust depression of slow afterhyperpolarization currents, endogenous release of noradrenaline does not, indicating that endogenous noradrenaline release is targeted to specific cellular locations. These findings provide a mechanism by which targeted endogenous release of noradrenaline can enhance information transfer in the hippocampus in response to salient events.


Assuntos
Potenciais de Ação , Região CA1 Hipocampal/fisiologia , Locus Cerúleo/fisiologia , Norepinefrina/fisiologia , Células Piramidais/fisiologia , Receptores Adrenérgicos beta/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores , Masculino , Camundongos Endogâmicos C57BL
17.
Psychopharmacology (Berl) ; 237(8): 2381-2394, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32435818

RESUMO

RATIONALE: Reward-related impairments are common in major depressive disorder (MDD) and may contribute to the loss of interest in pleasurable activities. A novel approach to studying reward-related decision-making are effort-based tasks; however, direct comparisons between delayed-onset and rapid-acting antidepressants (ADs) have not yet been carried out. OBJECTIVES: To investigate the effects of conventional delayed-onset ADs versus rapid-acting ADs, ketamine and scopolamine, on effort-related choice behaviour. METHODS: Female Lister hooded rats were trained in an operant effort for reward task (EfRT) where animals choose between working for a high value-high effort reward and consuming low value-low effort chow. Using a within-subject study design, animals were then tested following acute treatment with different monoaminergic ADs, and the rapid-acting ADs ketamine or scopolamine. RESULTS: Consistent with previous findings, we found choice behaviour was sensitive to dopaminergic manipulations. We observed that pre-feeding altered choice behaviour and that the use of high or low value reward differentially affected behaviour. Monoamine re-uptake inhibitors and rapid-acting ADs resulted in similar, general patterns of reduced motivation without any evidence for specific effects, and we did not observe any clear differences between these classes of antidepressant. CONCLUSIONS: Motivational changes induced by dopaminergic manipulations and pre-feeding differentially affect effort choice behaviour. However, both conventional delayed-onset ADs and ketamine and scopolamine appear to have detrimental effects on motivation in this task at the higher doses tested without any evidence of specificity for effort-related choice behaviour, in contrast to their specificity in tasks which look at more cognitive aspects of reward processing.


Assuntos
Antidepressivos/administração & dosagem , Comportamento de Escolha/efeitos dos fármacos , Motivação/efeitos dos fármacos , Recompensa , Animais , Comportamento de Escolha/fisiologia , Tomada de Decisões/efeitos dos fármacos , Tomada de Decisões/fisiologia , Preparações de Ação Retardada/administração & dosagem , Antagonistas de Dopamina/administração & dosagem , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Feminino , Motivação/fisiologia , Ratos , Fatores de Tempo
18.
Brain Neurosci Adv ; 4: 2398212820907177, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32219179

RESUMO

Deficits in reward processing are a central feature of major depressive disorder with patients exhibiting decreased reward learning and altered feedback sensitivity in probabilistic reversal learning tasks. Methods to quantify probabilistic learning in both rodents and humans have been developed, providing translational paradigms for depression research. We have utilised a probabilistic reversal learning task to investigate potential differences between conventional and rapid-acting antidepressants on reward learning and feedback sensitivity. We trained 12 rats in a touchscreen probabilistic reversal learning task before investigating the effect of acute administration of citalopram, venlafaxine, reboxetine, ketamine or scopolamine. Data were also analysed using a Q-learning reinforcement learning model to understand the effects of antidepressant treatment on underlying reward processing parameters. Citalopram administration decreased trials taken to learn the first rule and increased win-stay probability. Reboxetine decreased win-stay behaviour while also decreasing the number of rule changes animals performed in a session. Venlafaxine had no effect. Ketamine and scopolamine both decreased win-stay probability, number of rule changes performed and motivation in the task. Insights from the reinforcement learning model suggested that reboxetine led animals to choose a less optimal strategy, while ketamine decreased the model-free learning rate. These results suggest that reward learning and feedback sensitivity are not differentially modulated by conventional and rapid-acting antidepressant treatment in the probabilistic reversal learning task.

19.
Sci Rep ; 10(1): 2366, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32047274

RESUMO

Pseudoreplication occurs when the number of measured values or data points exceeds the number of genuine replicates, and when the statistical analysis treats all data points as independent and thus fully contributing to the result. By artificially inflating the sample size, pseudoreplication contributes to irreproducibility, and it is a pervasive problem in biological research. In some fields, more than half of published experiments have pseudoreplication - making it one of the biggest threats to inferential validity. Researchers may be reluctant to use appropriate statistical methods if their hypothesis is about the pseudoreplicates and not the genuine replicates; for example, when an intervention is applied to pregnant female rodents (genuine replicates) but the hypothesis is about the effect on the multiple offspring (pseudoreplicates). We propose using a Bayesian predictive approach, which enables researchers to make valid inferences about biological entities of interest, even if they are pseudoreplicates, and show the benefits of this approach using two in vivo data sets.

20.
Curr Opin Neurobiol ; 54: 37-43, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30212713

RESUMO

Multiple neuromodulators including acetylcholine, noradrenaline, dopamine and serotonin are released in response to uncertainty to focus attention on events where the predicted outcome does not match observed reality. In these situations, internal representations need to be updated, a process that requires long-term synaptic plasticity. Through a variety of common and divergent mechanisms, it is recently shown that all these neuromodulators facilitate the induction and/or expression of long-term synaptic plasticity within the hippocampus. Under physiological conditions, this may be critical for suprathreshold induction of plasticity endowing neuromodulators with a gating function and providing a mechanism by which neuromodulators enable the targeted updating of memory with relevant information to improve the accuracy of future predictions.


Assuntos
Hipocampo/citologia , Potenciação de Longa Duração/fisiologia , Neurônios/fisiologia , Neurotransmissores/metabolismo , Animais , Hipocampo/fisiologia , Humanos , Potenciação de Longa Duração/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurotransmissores/farmacologia , Canais de Potássio/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...